Class ScalarQuantizer
- java.lang.Object
-
- org.apache.lucene.util.quantization.ScalarQuantizer
-
public class ScalarQuantizer extends Object
Will scalar quantize float vectors into `int8` byte values. This is a lossy transformation. Scalar quantization works by first calculating the quantiles of the float vector values. The quantiles are calculated using the configured confidence interval. The [minQuantile, maxQuantile] are then used to scale the values into the range [0, 127] and bucketed into the nearest byte values.How Scalar Quantization Works
The basic mathematical equations behind this are fairly straight forward and based on min/max normalization. Given a float vector `v` and a confidenceInterval `q` we can calculate the quantiles of the vector values [minQuantile, maxQuantile].
byte = (float - minQuantile) * 127/(maxQuantile - minQuantile) float = (maxQuantile - minQuantile)/127 * byte + minQuantile
This then means to multiply two float values together (e.g. dot_product) we can do the following:
float1 * float2 ~= (byte1 * (maxQuantile - minQuantile)/127 + minQuantile) * (byte2 * (maxQuantile - minQuantile)/127 + minQuantile) float1 * float2 ~= (byte1 * byte2 * (maxQuantile - minQuantile)^2)/(127^2) + (byte1 * minQuantile * (maxQuantile - minQuantile)/127) + (byte2 * minQuantile * (maxQuantile - minQuantile)/127) + minQuantile^2 let alpha = (maxQuantile - minQuantile)/127 float1 * float2 ~= (byte1 * byte2 * alpha^2) + (byte1 * minQuantile * alpha) + (byte2 * minQuantile * alpha) + minQuantile^2
The expansion for square distance is much simpler:
square_distance = (float1 - float2)^2 (float1 - float2)^2 ~= (byte1 * alpha + minQuantile - byte2 * alpha - minQuantile)^2 = (alpha*byte1 + minQuantile)^2 + (alpha*byte2 + minQuantile)^2 - 2*(alpha*byte1 + minQuantile)(alpha*byte2 + minQuantile) this can be simplified to: = alpha^2 (byte1 - byte2)^2
-
-
Field Summary
Fields Modifier and Type Field Description static int
SCALAR_QUANTIZATION_SAMPLE_SIZE
-
Constructor Summary
Constructors Constructor Description ScalarQuantizer(float minQuantile, float maxQuantile, byte bits)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static ScalarQuantizer
fromVectors(FloatVectorValues floatVectorValues, float confidenceInterval, int totalVectorCount, byte bits)
This will read the float vector values and calculate the quantiles.static ScalarQuantizer
fromVectorsAutoInterval(FloatVectorValues floatVectorValues, VectorSimilarityFunction function, int totalVectorCount, byte bits)
byte
getBits()
float
getConstantMultiplier()
float
getLowerQuantile()
float
getUpperQuantile()
float
quantize(float[] src, byte[] dest, VectorSimilarityFunction similarityFunction)
Quantize a float vector into a byte vectorfloat
recalculateCorrectiveOffset(byte[] quantizedVector, ScalarQuantizer oldQuantizer, VectorSimilarityFunction similarityFunction)
Recalculate the old score corrective value given new current quantilesString
toString()
-
-
-
Field Detail
-
SCALAR_QUANTIZATION_SAMPLE_SIZE
public static final int SCALAR_QUANTIZATION_SAMPLE_SIZE
- See Also:
- Constant Field Values
-
-
Method Detail
-
quantize
public float quantize(float[] src, byte[] dest, VectorSimilarityFunction similarityFunction)
Quantize a float vector into a byte vector- Parameters:
src
- the source vectordest
- the destination vectorsimilarityFunction
- the similarity function used to calculate the quantile- Returns:
- the corrective offset that needs to be applied to the score
-
recalculateCorrectiveOffset
public float recalculateCorrectiveOffset(byte[] quantizedVector, ScalarQuantizer oldQuantizer, VectorSimilarityFunction similarityFunction)
Recalculate the old score corrective value given new current quantiles- Parameters:
quantizedVector
- the old vectoroldQuantizer
- the old quantizersimilarityFunction
- the similarity function used to calculate the quantile- Returns:
- the new offset
-
getLowerQuantile
public float getLowerQuantile()
-
getUpperQuantile
public float getUpperQuantile()
-
getConstantMultiplier
public float getConstantMultiplier()
-
getBits
public byte getBits()
-
fromVectors
public static ScalarQuantizer fromVectors(FloatVectorValues floatVectorValues, float confidenceInterval, int totalVectorCount, byte bits) throws IOException
This will read the float vector values and calculate the quantiles. If the number of float vectors is less thanSCALAR_QUANTIZATION_SAMPLE_SIZE
then all the values will be read and the quantiles calculated. If the number of float vectors is greater thanSCALAR_QUANTIZATION_SAMPLE_SIZE
then a random sample ofSCALAR_QUANTIZATION_SAMPLE_SIZE
will be read and the quantiles calculated.- Parameters:
floatVectorValues
- the float vector values from which to calculate the quantilesconfidenceInterval
- the confidence interval used to calculate the quantilestotalVectorCount
- the total number of live float vectors in the index. This is vital for accounting for deleted documents when calculating the quantiles.bits
- the number of bits to use for quantization- Returns:
- A new
ScalarQuantizer
instance - Throws:
IOException
- if there is an error reading the float vector values
-
fromVectorsAutoInterval
public static ScalarQuantizer fromVectorsAutoInterval(FloatVectorValues floatVectorValues, VectorSimilarityFunction function, int totalVectorCount, byte bits) throws IOException
- Throws:
IOException
-
-