Class ScalarQuantizer


  • public class ScalarQuantizer
    extends Object
    Will scalar quantize float vectors into `int8` byte values. This is a lossy transformation. Scalar quantization works by first calculating the quantiles of the float vector values. The quantiles are calculated using the configured confidence interval. The [minQuantile, maxQuantile] are then used to scale the values into the range [0, 127] and bucketed into the nearest byte values.

    How Scalar Quantization Works

    The basic mathematical equations behind this are fairly straight forward and based on min/max normalization. Given a float vector `v` and a confidenceInterval `q` we can calculate the quantiles of the vector values [minQuantile, maxQuantile].

       byte = (float - minQuantile) * 127/(maxQuantile - minQuantile)
       float = (maxQuantile - minQuantile)/127 * byte + minQuantile
     

    This then means to multiply two float values together (e.g. dot_product) we can do the following:

       float1 * float2 ~= (byte1 * (maxQuantile - minQuantile)/127 + minQuantile) * (byte2 * (maxQuantile - minQuantile)/127 + minQuantile)
       float1 * float2 ~= (byte1 * byte2 * (maxQuantile - minQuantile)^2)/(127^2) + (byte1 * minQuantile * (maxQuantile - minQuantile)/127) + (byte2 * minQuantile * (maxQuantile - minQuantile)/127) + minQuantile^2
       let alpha = (maxQuantile - minQuantile)/127
       float1 * float2 ~= (byte1 * byte2 * alpha^2) + (byte1 * minQuantile * alpha) + (byte2 * minQuantile * alpha) + minQuantile^2
     

    The expansion for square distance is much simpler:

      square_distance = (float1 - float2)^2
      (float1 - float2)^2 ~= (byte1 * alpha + minQuantile - byte2 * alpha - minQuantile)^2
      = (alpha*byte1 + minQuantile)^2 + (alpha*byte2 + minQuantile)^2 - 2*(alpha*byte1 + minQuantile)(alpha*byte2 + minQuantile)
      this can be simplified to:
      = alpha^2 (byte1 - byte2)^2
     
    • Field Detail

      • SCALAR_QUANTIZATION_SAMPLE_SIZE

        public static final int SCALAR_QUANTIZATION_SAMPLE_SIZE
        See Also:
        Constant Field Values
    • Constructor Detail

      • ScalarQuantizer

        public ScalarQuantizer​(float minQuantile,
                               float maxQuantile,
                               byte bits)
        Parameters:
        minQuantile - the lower quantile of the distribution
        maxQuantile - the upper quantile of the distribution
        bits - the number of bits to use for quantization
    • Method Detail

      • quantize

        public float quantize​(float[] src,
                              byte[] dest,
                              VectorSimilarityFunction similarityFunction)
        Quantize a float vector into a byte vector
        Parameters:
        src - the source vector
        dest - the destination vector
        similarityFunction - the similarity function used to calculate the quantile
        Returns:
        the corrective offset that needs to be applied to the score
      • recalculateCorrectiveOffset

        public float recalculateCorrectiveOffset​(byte[] quantizedVector,
                                                 ScalarQuantizer oldQuantizer,
                                                 VectorSimilarityFunction similarityFunction)
        Recalculate the old score corrective value given new current quantiles
        Parameters:
        quantizedVector - the old vector
        oldQuantizer - the old quantizer
        similarityFunction - the similarity function used to calculate the quantile
        Returns:
        the new offset
      • getLowerQuantile

        public float getLowerQuantile()
      • getUpperQuantile

        public float getUpperQuantile()
      • getConstantMultiplier

        public float getConstantMultiplier()
      • getBits

        public byte getBits()
      • fromVectors

        public static ScalarQuantizer fromVectors​(FloatVectorValues floatVectorValues,
                                                  float confidenceInterval,
                                                  int totalVectorCount,
                                                  byte bits)
                                           throws IOException
        This will read the float vector values and calculate the quantiles. If the number of float vectors is less than SCALAR_QUANTIZATION_SAMPLE_SIZE then all the values will be read and the quantiles calculated. If the number of float vectors is greater than SCALAR_QUANTIZATION_SAMPLE_SIZE then a random sample of SCALAR_QUANTIZATION_SAMPLE_SIZE will be read and the quantiles calculated.
        Parameters:
        floatVectorValues - the float vector values from which to calculate the quantiles
        confidenceInterval - the confidence interval used to calculate the quantiles
        totalVectorCount - the total number of live float vectors in the index. This is vital for accounting for deleted documents when calculating the quantiles.
        bits - the number of bits to use for quantization
        Returns:
        A new ScalarQuantizer instance
        Throws:
        IOException - if there is an error reading the float vector values