public abstract static class Similarity.SimScorer extends Object
Similarity should
subclass SimWeight and define the statistics they require in the
subclass. Examples include idf, average field length, etc.| Modifier | Constructor and Description |
|---|---|
protected |
SimScorer()
Sole constructor.
|
| Modifier and Type | Method and Description |
|---|---|
Explanation |
explain(Explanation freq,
long norm)
Explain the score for a single document
|
abstract float |
score(float freq,
long norm)
Score a single document.
|
protected SimScorer()
public abstract float score(float freq,
long norm)
freq is the document-term sloppy
frequency and must be finite and positive. norm is the
encoded normalization factor as computed by
Similarity.computeNorm(FieldInvertState) at index time, or
1 if norms are disabled. norm is never 0.
Score must not decrease when freq increases, ie. if
freq1 > freq2, then score(freq1, norm) >=
score(freq2, norm) for any value of norm that may be produced
by Similarity.computeNorm(FieldInvertState).
Score must not increase when the unsigned norm increases, ie. if
Long.compareUnsigned(norm1, norm2) > 0 then
score(freq, norm1) <= score(freq, norm2) for any legal
freq.
As a consequence, the maximum score that this scorer can produce is bound
by score(Float.MAX_VALUE, 1).
freq - sloppy term frequency, must be finite and positivenorm - encoded normalization factor or 1 if norms are disabledpublic Explanation explain(Explanation freq, long norm)
freq - Explanation of how the sloppy term frequency was computednorm - encoded normalization factor, as returned by Similarity.computeNorm(org.apache.lucene.index.FieldInvertState), or 1 if norms are disabledCopyright © 2000-2021 Apache Software Foundation. All Rights Reserved.