public class MultiSimilarity extends Similarity
Similarity.SimScorer, Similarity.SimWeight| Modifier and Type | Field and Description | 
|---|---|
| protected Similarity[] | simsthe sub-similarities used to create the combined score | 
| Constructor and Description | 
|---|
| MultiSimilarity(Similarity[] sims)Creates a MultiSimilarity which will sum the scores
 of the provided  sims. | 
| Modifier and Type | Method and Description | 
|---|---|
| long | computeNorm(FieldInvertState state)Computes the normalization value for a field, given the accumulated
 state of term processing for this field (see  FieldInvertState). | 
| Similarity.SimWeight | computeWeight(float queryBoost,
             CollectionStatistics collectionStats,
             TermStatistics... termStats)Compute any collection-level weight (e.g. | 
| Similarity.SimScorer | simScorer(Similarity.SimWeight stats,
         AtomicReaderContext context)Creates a new  Similarity.SimScorerto score matching documents from a segment of the inverted index. | 
coord, queryNormprotected final Similarity[] sims
public MultiSimilarity(Similarity[] sims)
sims.public long computeNorm(FieldInvertState state)
SimilarityFieldInvertState).
 Matches in longer fields are less precise, so implementations of this
 method usually set smaller values when state.getLength() is large,
 and larger values when state.getLength() is small.
computeNorm in class Similaritystate - current processing state for this fieldpublic Similarity.SimWeight computeWeight(float queryBoost, CollectionStatistics collectionStats, TermStatistics... termStats)
SimilaritycomputeWeight in class SimilarityqueryBoost - the query-time boost.collectionStats - collection-level statistics, such as the number of tokens in the collection.termStats - term-level statistics, such as the document frequency of a term across the collection.public Similarity.SimScorer simScorer(Similarity.SimWeight stats, AtomicReaderContext context) throws IOException
SimilaritySimilarity.SimScorer to score matching documents from a segment of the inverted index.simScorer in class Similaritystats - collection information from Similarity.computeWeight(float, CollectionStatistics, TermStatistics...)context - segment of the inverted index to be scored.contextIOException - if there is a low-level I/O errorCopyright © 2000-2014 Apache Software Foundation. All Rights Reserved.