
Apache Lucene - Query Parser Syntax

Peter Carlson

Table of contents

1 Overview..2

2 Terms... 2

3 Fields..3

4 Term Modifiers.. 3

4.1 Wildcard Searches... 3

4.2 Fuzzy Searches.. 4

4.3 Proximity Searches..4

4.4 Range Searches..4

4.5 Boosting a Term.. 5

5 Boolean Operators..5

5.1 ... 5

5.2 AND.. 5

5.3 +...6

5.4 NOT...6

5.5 -..6

6 Grouping.. 6

7 Field Grouping... 7

8 Escaping Special Characters.. 7

Copyright © 2006 The Apache Software Foundation. All rights reserved.

1. Overview

Although Lucene provides the ability to create your own queries through its API, it also
provides a rich query language through the Query Parser, a lexer which interprets a string
into a Lucene Query using JavaCC.

Generally, the query parser syntax may change from release to release. This page describes
the syntax as of the current release. If you are using a different version of Lucene, please
consult the copy of docs/queryparsersyntax.html that was distributed with the
version you are using.

Before choosing to use the provided Query Parser, please consider the following:
1. If you are programmatically generating a query string and then parsing it with the query

parser then you should seriously consider building your queries directly with the query
API. In other words, the query parser is designed for human-entered text, not for
program-generated text.

2. Untokenized fields are best added directly to queries, and not through the query parser. If
a field's values are generated programmatically by the application, then so should query
clauses for this field. An analyzer, which the query parser uses, is designed to convert
human-entered text to terms. Program-generated values, like dates, keywords, etc., should
be consistently program-generated.

3. In a query form, fields which are general text should use the query parser. All others,
such as date ranges, keywords, etc. are better added directly through the query API. A
field with a limit set of values, that can be specified with a pull-down menu should not be
added to a query string which is subsequently parsed, but rather added as a TermQuery
clause.

2. Terms

A query is broken up into terms and operators. There are two types of terms: Single Terms
and Phrases.

A Single Term is a single word such as "test" or "hello".

A Phrase is a group of words surrounded by double quotes such as "hello dolly".

Multiple terms can be combined together with Boolean operators to form a more complex
query (see below).

Note: The analyzer used to create the index will be used on the terms and phrases in the
query string. So it is important to choose an analyzer that will not interfere with the terms
used in the query string.

Apache Lucene - Query Parser Syntax

Page 2
Copyright © 2006 The Apache Software Foundation. All rights reserved.

3. Fields

Lucene supports fielded data. When performing a search you can either specify a field, or use
the default field. The field names and default field is implementation specific.

You can search any field by typing the field name followed by a colon ":" and then the term
you are looking for.

As an example, let's assume a Lucene index contains two fields, title and text and text is the
default field. If you want to find the document entitled "The Right Way" which contains the
text "don't go this way", you can enter:
title:"The Right Way" AND text:go

or
title:"Do it right" AND right

Since text is the default field, the field indicator is not required.

Note: The field is only valid for the term that it directly precedes, so the query
title:Do it right

Will only find "Do" in the title field. It will find "it" and "right" in the default field (in this
case the text field).

4. Term Modifiers

Lucene supports modifying query terms to provide a wide range of searching options.

4.1. Wildcard Searches

Lucene supports single and multiple character wildcard searches within single terms (not
within phrase queries).

To perform a single character wildcard search use the "?" symbol.

To perform a multiple character wildcard search use the "*" symbol.

The single character wildcard search looks for terms that match that with the single character
replaced. For example, to search for "text" or "test" you can use the search:
te?t

Multiple character wildcard searches looks for 0 or more characters. For example, to search
for test, tests or tester, you can use the search:
test*

Apache Lucene - Query Parser Syntax

Page 3
Copyright © 2006 The Apache Software Foundation. All rights reserved.

You can also use the wildcard searches in the middle of a term.
te*t

Note: You cannot use a * or ? symbol as the first character of a search.

4.2. Fuzzy Searches

Lucene supports fuzzy searches based on the Levenshtein Distance, or Edit Distance
algorithm. To do a fuzzy search use the tilde, "~", symbol at the end of a Single word Term.
For example to search for a term similar in spelling to "roam" use the fuzzy search:
roam~

This search will find terms like foam and roams.

Starting with Lucene 1.9 an additional (optional) parameter can specify the required
similarity. The value is between 0 and 1, with a value closer to 1 only terms with a higher
similarity will be matched. For example:
roam~0.8

The default that is used if the parameter is not given is 0.5.

4.3. Proximity Searches

Lucene supports finding words are a within a specific distance away. To do a proximity
search use the tilde, "~", symbol at the end of a Phrase. For example to search for a "apache"
and "jakarta" within 10 words of each other in a document use the search:
"jakarta apache"~10

4.4. Range Searches

Range Queries allow one to match documents whose field(s) values are between the lower
and upper bound specified by the Range Query. Range Queries can be inclusive or exclusive
of the upper and lower bounds. Sorting is done lexicographically.
mod_date:[20020101 TO 20030101]

This will find documents whose mod_date fields have values between 20020101 and
20030101, inclusive. Note that Range Queries are not reserved for date fields. You could also
use range queries with non-date fields:
title:{Aida TO Carmen}

This will find all documents whose titles are between Aida and Carmen, but not including
Aida and Carmen.

Inclusive range queries are denoted by square brackets. Exclusive range queries are denoted
by curly brackets.

Apache Lucene - Query Parser Syntax

Page 4
Copyright © 2006 The Apache Software Foundation. All rights reserved.

4.5. Boosting a Term

Lucene provides the relevance level of matching documents based on the terms found. To
boost a term use the caret, "^", symbol with a boost factor (a number) at the end of the term
you are searching. The higher the boost factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For
example, if you are searching for
jakarta apache

and you want the term "jakarta" to be more relevant boost it using the ^ symbol along with
the boost factor next to the term. You would type:
jakarta^4 apache

This will make documents with the term jakarta appear more relevant. You can also boost
Phrase Terms as in the example:
"jakarta apache"^4 "Apache Lucene"

By default, the boost factor is 1. Although the boost factor must be positive, it can be less
than 1 (e.g. 0.2)

5. Boolean Operators

Boolean operators allow terms to be combined through logic operators. Lucene supports
AND, "+", OR, NOT and "-" as Boolean operators(Note: Boolean operators must be ALL
CAPS).

5.1.

The OR operator is the default conjunction operator. This means that if there is no Boolean
operator between two terms, the OR operator is used. The OR operator links two terms and
finds a matching document if either of the terms exist in a document. This is equivalent to a
union using sets. The symbol || can be used in place of the word OR.

To search for documents that contain either "jakarta apache" or just "jakarta" use the query:
"jakarta apache" jakarta

or
"jakarta apache" OR jakarta

5.2. AND

The AND operator matches documents where both terms exist anywhere in the text of a
single document. This is equivalent to an intersection using sets. The symbol && can be used

Apache Lucene - Query Parser Syntax

Page 5
Copyright © 2006 The Apache Software Foundation. All rights reserved.

in place of the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene" use the query:
"jakarta apache" AND "Apache Lucene"

5.3. +

The "+" or required operator requires that the term after the "+" symbol exist somewhere in a
the field of a single document.

To search for documents that must contain "jakarta" and may contain "lucene" use the query:
+jakarta lucene

5.4. NOT

The NOT operator excludes documents that contain the term after NOT. This is equivalent to
a difference using sets. The symbol ! can be used in place of the word NOT.

To search for documents that contain "jakarta apache" but not "Apache Lucene" use the
query:
"jakarta apache" NOT "Apache Lucene"

Note: The NOT operator cannot be used with just one term. For example, the following
search will return no results:
NOT "jakarta apache"

5.5. -

The "-" or prohibit operator excludes documents that contain the term after the "-" symbol.

To search for documents that contain "jakarta apache" but not "Apache Lucene" use the
query:
"jakarta apache" -"Apache Lucene"

6. Grouping

Lucene supports using parentheses to group clauses to form sub queries. This can be very
useful if you want to control the boolean logic for a query.

To search for either "jakarta" or "apache" and "website" use the query:
(jakarta OR apache) AND website

This eliminates any confusion and makes sure you that website must exist and either term
jakarta or apache may exist.

Apache Lucene - Query Parser Syntax

Page 6
Copyright © 2006 The Apache Software Foundation. All rights reserved.

7. Field Grouping

Lucene supports using parentheses to group multiple clauses to a single field.

To search for a title that contains both the word "return" and the phrase "pink panther" use
the query:
title:(+return +"pink panther")

8. Escaping Special Characters

Lucene supports escaping special characters that are part of the query syntax. The current list
special characters are

+ - && || ! () { } [] ^ " ~ * ? : \

To escape these character use the \ before the character. For example to search for (1+1):2
use the query:
\(1\+1\)\:2

Apache Lucene - Query Parser Syntax

Page 7
Copyright © 2006 The Apache Software Foundation. All rights reserved.

	1 Overview
	2 Terms
	3 Fields
	4 Term Modifiers
	4.1 Wildcard Searches
	4.2 Fuzzy Searches
	4.3 Proximity Searches
	4.4 Range Searches
	4.5 Boosting a Term

	5 Boolean Operators
	5.1
	5.2 AND
	5.3 +
	5.4 NOT
	5.5 -

	6 Grouping
	7 Field Grouping
	8 Escaping Special Characters

