Uses of Class
org.apache.lucene.search.similarities.Similarity
-
Packages that use Similarity Package Description org.apache.lucene.index Code to maintain and access indices.org.apache.lucene.search Code to search indices.org.apache.lucene.search.similarities This package contains the various ranking models that can be used in Lucene.org.apache.lucene.search.spans The calculus of spans. -
-
Uses of Similarity in org.apache.lucene.index
Fields in org.apache.lucene.index declared as Similarity Modifier and Type Field Description protected SimilarityLiveIndexWriterConfig. similaritySimilarityto use when encoding norms.Methods in org.apache.lucene.index that return Similarity Modifier and Type Method Description SimilarityIndexWriterConfig. getSimilarity()SimilarityLiveIndexWriterConfig. getSimilarity()Expert: returns theSimilarityimplementation used by thisIndexWriter.Methods in org.apache.lucene.index with parameters of type Similarity Modifier and Type Method Description IndexWriterConfigIndexWriterConfig. setSimilarity(Similarity similarity)Expert: set theSimilarityimplementation used by this IndexWriter. -
Uses of Similarity in org.apache.lucene.search
Methods in org.apache.lucene.search that return Similarity Modifier and Type Method Description static SimilarityIndexSearcher. getDefaultSimilarity()Expert: returns a default Similarity instance.SimilarityIndexSearcher. getSimilarity()Expert: Get theSimilarityto use to compute scores.Methods in org.apache.lucene.search with parameters of type Similarity Modifier and Type Method Description voidIndexSearcher. setSimilarity(Similarity similarity)Expert: Set the Similarity implementation used by this IndexSearcher. -
Uses of Similarity in org.apache.lucene.search.similarities
Subclasses of Similarity in org.apache.lucene.search.similarities Modifier and Type Class Description classAxiomaticAxiomatic approaches for IR.classAxiomaticF1EXPF1EXP is defined as Sum(tf(term_doc_freq)*ln(docLen)*IDF(term)) where IDF(t) = pow((N+1)/df(t), k) N=total num of docs, df=doc freqclassAxiomaticF1LOGF1LOG is defined as Sum(tf(term_doc_freq)*ln(docLen)*IDF(term)) where IDF(t) = ln((N+1)/df(t)) N=total num of docs, df=doc freqclassAxiomaticF2EXPF2EXP is defined as Sum(tfln(term_doc_freq, docLen)*IDF(term)) where IDF(t) = pow((N+1)/df(t), k) N=total num of docs, df=doc freqclassAxiomaticF2LOGF2EXP is defined as Sum(tfln(term_doc_freq, docLen)*IDF(term)) where IDF(t) = ln((N+1)/df(t)) N=total num of docs, df=doc freqclassAxiomaticF3EXPF3EXP is defined as Sum(tf(term_doc_freq)*IDF(term)-gamma(docLen, queryLen)) where IDF(t) = pow((N+1)/df(t), k) N=total num of docs, df=doc freq gamma(docLen, queryLen) = (docLen-queryLen)*queryLen*s/avdl NOTE: the gamma function of this similarity creates negative scoresclassAxiomaticF3LOGF3EXP is defined as Sum(tf(term_doc_freq)*IDF(term)-gamma(docLen, queryLen)) where IDF(t) = ln((N+1)/df(t)) N=total num of docs, df=doc freq gamma(docLen, queryLen) = (docLen-queryLen)*queryLen*s/avdl NOTE: the gamma function of this similarity creates negative scoresclassBM25SimilarityBM25 Similarity.classBooleanSimilaritySimple similarity that gives terms a score that is equal to their query boost.classClassicSimilarityExpert: Historical scoring implementation.classDFISimilarityImplements the Divergence from Independence (DFI) model based on Chi-square statistics (i.e., standardized Chi-squared distance from independence in term frequency tf).classDFRSimilarityImplements the divergence from randomness (DFR) framework introduced in Gianni Amati and Cornelis Joost Van Rijsbergen.classIBSimilarityProvides a framework for the family of information-based models, as described in Stéphane Clinchant and Eric Gaussier.classLMDirichletSimilarityBayesian smoothing using Dirichlet priors.classLMJelinekMercerSimilarityLanguage model based on the Jelinek-Mercer smoothing method.classLMSimilarityAbstract superclass for language modeling Similarities.classMultiSimilarityImplements the CombSUM method for combining evidence from multiple similarity values described in: Joseph A.classPerFieldSimilarityWrapperProvides the ability to use a differentSimilarityfor different fields.classSimilarityBaseA subclass ofSimilaritythat provides a simplified API for its descendants.classTFIDFSimilarityImplementation ofSimilaritywith the Vector Space Model.Fields in org.apache.lucene.search.similarities declared as Similarity Modifier and Type Field Description protected Similarity[]MultiSimilarity. simsthe sub-similarities used to create the combined scoreMethods in org.apache.lucene.search.similarities that return Similarity Modifier and Type Method Description abstract SimilarityPerFieldSimilarityWrapper. get(String name)Returns aSimilarityfor scoring a field.Constructors in org.apache.lucene.search.similarities with parameters of type Similarity Constructor Description MultiSimilarity(Similarity[] sims)Creates a MultiSimilarity which will sum the scores of the providedsims. -
Uses of Similarity in org.apache.lucene.search.spans
Fields in org.apache.lucene.search.spans declared as Similarity Modifier and Type Field Description protected SimilaritySpanWeight. similarity
-